Math 210C Lecture 19 Notes

Daniel Raban

May 15, 2019

1 Tor Functors and Flat Modules

1.1 Tor of $\mathbb{Z}/n\mathbb{Z}$

Let R be a ring and N be a right R-module. We had a functor $t_N : R \operatorname{-Mod} \to \operatorname{Ab}$ given by $t_N = N \otimes_R \cdot$. This is a right exact functor, so it has a sequence of left derived functors

$$\operatorname{Tor}_{i}^{R}(N, \cdot) = L_{i}t_{N}.$$

If we have a short exact sequence

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

we get a long exact sequence

$$\cdots \longrightarrow \operatorname{Tor}_{1}^{R}(N,C) \longrightarrow N \otimes_{R} A \longrightarrow N \otimes_{R} B \longrightarrow N \otimes_{R} C \longrightarrow 0$$

Example 1.1. Let $R = \mathbb{Z}$ and $N = \mathbb{Z}/n\mathbb{Z}$. Then we have

 $0 \longrightarrow \mathbb{Z} \xrightarrow{n} \mathbb{Z} \longrightarrow \mathbb{Z}/n\mathbb{Z} \longrightarrow 0$

We get the long exact sequence

$$\cdots \longrightarrow 0 \longrightarrow \underbrace{\operatorname{Tor}_{1}^{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/n\mathbb{Z})}_{\cong \mathbb{Z}/n\mathbb{Z}} \longrightarrow \mathbb{Z}/n\mathbb{Z} \xrightarrow{0} \mathbb{Z}/n\mathbb{Z} \xrightarrow{\operatorname{id}} \mathbb{Z}/n\mathbb{Z} \longrightarrow 0$$

1.2 Flat modules

Definition 1.1. A right *R*-module *N* is **flat** if t_N is exact.

In general, if F is left exact and P is projective, $L_iF(P) = 0$ for $i \ge i$. This motivates the following proposition.

Proposition 1.1. Projective R^{op} -modules are R^{op} -flat.

Proof. If P is a projective R^{op} -module, then there exists a projective A such that $P \oplus Q = F$, where F is free. Then if

 $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$

is exact, so is

$$0 \longrightarrow F \otimes_R A \longrightarrow F \otimes_R B \longrightarrow F \otimes_R C \longrightarrow 0$$

as direct sums commute with the tensor product. We now have

$$0 \longrightarrow (P \otimes A) \oplus (Q \otimes A) \longrightarrow (P \otimes B) \oplus (Q \otimes B) \longrightarrow (P \otimes C) \oplus (Q \otimes C) \longrightarrow 0$$

So we get that

$$0 \longrightarrow P \otimes_R A \longrightarrow P \otimes_R B \longrightarrow P \otimes_R C \longrightarrow 0$$

is exact.

Proposition 1.2. Let R be a PID. Then an R-module is flat iff it is R-torsion free.

Proof. Suppose M is flat over R. Let $0 \neq r \in R$. Then let $\phi_r : R \to R$ send $x \mapsto rx$. Now the map $\mathrm{id}_M \otimes \phi_r : M \otimes_R R \to M \otimes_R R$ is injective, as M is R-flat. But this is just the same as the map $m \mapsto rm$, as $M \otimes_R R \cong M$. So $rm \neq 0$ for all $M \in M$. This holds for all $r \in R$, so M is R-torsion free.

Let M be R-torsion free. Then $M = \bigcup_{N \subseteq M} N = \varinjlim_N N$, where the indexing is over all finitely generated submodule. Then $M \otimes_R \cong \varinjlim_N N \otimes_R A$ for all A, as t_N is a left adjoint so it commutes with colimits. So it suffices to sho that t_N is left exact for finitely generated, forsion-free N. Such modules are free, so t_N is left exact. This means that t_M is left exact.

Remark 1.1. Let N be an S-R-bimodule. Then $t_N : R \operatorname{-Mod} \to S \operatorname{-Mod}$, and $\operatorname{Tor}_i^R(N, \cdot) : R \operatorname{-Mod} \to S \operatorname{-Mod}$. Composition with a forgetful functor gives $\operatorname{Tor}_i^R(N, \cdot) : R \operatorname{-Mod} \to \operatorname{Ab}$, as we have already defined.

Example 1.2. Let $A \in Ab$. We have

$$0 \longrightarrow \operatorname{Tor}_{1}^{\mathbb{Z}}(A, C) \longrightarrow A \xrightarrow{n} A/nA \longrightarrow 0$$

We get that $\operatorname{Tor}_{i}^{\mathbb{Z}}(A,\mathbb{Z}) = 0$ for $i \geq 2$, so we get that

$$\operatorname{Tor}_{i}(A, \mathbb{Z}/n\mathbb{Z}) = \begin{cases} A/nA & i = 0\\ A[n] & i = 1\\ 0 & i \ge 2, \end{cases}$$

where A[n] is *n*-torsion.

Lemma 1.1. For a right *R*-module *A*, the following are equivalent.

- 1. A is flat.
- 2. $\operatorname{Tor}_{1}^{R}(A, \cdot) = 0.$
- 3. $Tor_i^R(A, \cdot) = 0$ for all $i \ge i$.

Proof. $(2) \implies (1)$: If we have

$$0 \longrightarrow B_1 \longrightarrow B_2 \longrightarrow B_3 \longrightarrow 0$$

then we get

$$\underbrace{\operatorname{Tor}_1^R(A, B_3)}_{=0} \longrightarrow A \otimes_R B_1 \longrightarrow A \otimes_R B_2 \longrightarrow A \otimes_R B_3 \longrightarrow 0$$

(1) \implies (3): Let $Q \rightarrow B$ be an *R*-projective resolution, then we have

$$\cdots \longrightarrow A \otimes_R Q_2 \longrightarrow A \otimes_R Q_1 \longrightarrow A \otimes_R Q_0 \xrightarrow{\operatorname{id} \otimes \varepsilon_R} A \otimes_R B \longrightarrow 0$$

Since t_A is exact, we get that $\operatorname{Tor}_i^R(A, B) = L_i t_A(B) = 0$ for all $i \ge i$.

1.3 Relatinship between Tor and homology

Proposition 1.3. Let A be an \mathbb{R}^{op} -module, let B be an R-module, and let $P \to A$ be a projective resolution of A. Then $\operatorname{Tor}_{1}^{R}(A, B) \cong H_{i}(P \otimes_{R} B)$ for all $i \geq 0$ (natural in B).

So $\operatorname{Tor}_{i}^{R}(\cdot, B)$ are the left derived functors of $\cdot \otimes_{R} B$.

Proof. Idea: Let $Q_{\cdot} \to B$ be aprojective resolution of B. Then $P_{\cdot} \otimes Q_{\cdot}$ is a "double complex'.' Now let $T_{\cdot} = \operatorname{Tot}(P_{\cdot} \otimes_{R} Q_{\cdot})$, where $T_{k} = \bigoplus_{i+j=k} P_{i} \otimes_{r} Q_{j}$ with differentials $f_{i}^{A} \otimes \operatorname{id}_{Q_{j}} + (-1)^{i} \operatorname{id}_{o_{i}} \otimes d_{i}^{B}$. We get maps of complexes (up to sign) $T_{\cdot} \to P_{\cdot} \otimes_{R} B$ and $T_{\cdot} \to A \otimes_{R} Q_{\cdot}$. These maps induce isomorphisms on homology. So we get

$$H_i(P \otimes B) \cong H_i(T) \cong H_i(A \otimes Q)$$

for all i.

Corollary 1.1. If R is commutative, then $\operatorname{Tor}_i^R(A, B) \cong \operatorname{Tor}_i^R(B, A)$ for R-modules A and B (natural isomorphisms of bifunctors).

1.4 *F*-acyclic objects and examples of Tor

Definition 1.2. If $F : \mathcal{C} \to \mathcal{D}$ is a right exact functor, an object $A \in \mathcal{C}$ is *F*-acyclic if $L_iF(A) = 0$ for all $i \ge 1$.

Example 1.3. If A is projective, A is F-acyclic.

Example 1.4. If B is R-flat if and only if B is t_A -acyclic:

$$L_i t_a(B) = \operatorname{Tor}_i^R(A, B) = L_i t'_B(A) = 0$$

for all $i \geq 1$.

Proposition 1.4. Let $F : \mathcal{C} \to \mathcal{D}$ be a right exact functor, and let $C \to A$ be a resolution of A by F-acyclic objects. Then $L_iF(A) \cong H_i(F(C))$ for all $i \ge 0$.

Lemma 1.2. $\operatorname{Tor}_{1}^{\mathbb{Z}}(A, \cdot) = 0$ if and only if A is torsion-free.

We have already shown that the first condition is iff A is flat.

Proof. $\operatorname{Tor}_{i}^{|} Z(\cdot, B)$ comutes with \varinjlim , so it is enough to show this for finitely generated A. So assume $A = \mathbb{Z}^{m} \oplus \mathbb{Z}/n_{1}\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}.n_{r}\mathbb{Z}$. We have a projective resolution

$$0 \longrightarrow \mathbb{Z}^{m+r} \longrightarrow \mathbb{Z}^{m+r} \longrightarrow A \longrightarrow 0.$$

We have $\otimes_Z B : B^{m+r} \to B^{m+r}$ with $\operatorname{Tor}_1^{\mathbb{Z}}(A, B) \cong (B[n_i] \oplus \cdots \oplus B[n_r] = 0)$. We also have $\operatorname{Tor}_j^{\mid} Z(A, B) = 0$ for all $j \ge 2$. Then $\operatorname{Tor}_1^{\mathbb{Z}}(A, B) = 0$ for all B if and only if $n_1 = \cdots n_r = 1$, which is when A is torsion-free.

Example 1.5. Let $R = \mathbb{Q}[x, y]$, and consider \mathbb{Q} as an *R*-module by $x \cdot a = y \cdot b = 0$. That is, $\mathbb{Q} \cong \mathbb{Q}[x, y]/(x, y)$. We have the free resolution

$$0 \longrightarrow \mathbb{Q}[x, y] \longrightarrow \mathbb{Q}[x, y]^2 \longrightarrow \mathbb{Q}[x, y] \longrightarrow \mathbb{Q} \longrightarrow 0$$

$$(x, y)$$

We have that $\operatorname{Tor}_2^R(\mathbb{Q},\mathbb{Q}) = \ker(\mathbb{Q} \to \mathbb{Q}^2) \cong \mathbb{Q}$. On the other hand, $\operatorname{Tor}_2^R(\mathbb{Q},\mathbb{Q}) \cong \operatorname{Tor}((x,y),\mathbb{Q})$, where (x,y) is not *R*-flat.

$$0 \longrightarrow (x, y) \longrightarrow R \longrightarrow \mathbb{Q} \longrightarrow 0$$